If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2736x^2+53x+382=0
a = -2736; b = 53; c = +382;
Δ = b2-4ac
Δ = 532-4·(-2736)·382
Δ = 4183417
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(53)-\sqrt{4183417}}{2*-2736}=\frac{-53-\sqrt{4183417}}{-5472} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(53)+\sqrt{4183417}}{2*-2736}=\frac{-53+\sqrt{4183417}}{-5472} $
| -2736x^2+92x+382=0 | | -2736x^2+79x+382=0 | | -2736x^2+307x+382=0 | | P(4)p=0.70 | | 7c-9=15c-73 | | 7w+61=17w+51 | | 21x-5x=400 | | (382/24)-(114/23)*x=0 | | (382/24)=(114/23)*x | | (382/24)*x=114/23 | | (382/24)x=114/23 | | 382/24+x=114/23 | | 382/24=x | | x^2+(2x)^2=100 | | 7/17=12/y | | (6x+18)/(2x+3)=1 | | 114*(x-23)-(3675/23)=0 | | 7+3x/4=-2 | | 3(f-9)+10(f-11)=90 | | 3^(3x)=27 | | 114x+307=23 | | 23x+307=23 | | z+(-9)=4 | | 6(2-a)=9(a-4) | | -15=37b | | (30/140)=(100/x) | | x=((12/9)/2)^2 | | 9^(x+7)=81 | | P(1x)=3x-5 | | 9(6s-5)=54s-45 | | y=40+3*6 | | y=45+2*6 |